

Mathématiques Expertes

Épreuve 2, Option A

19 mars 2022

16h-17h30 heure de Paris

Code sujet : \bigcirc \bigcirc

FONCTIONNEMENT DES QUESTIONS

- Les *questions à choix multiples* sont numérotées **M1**, **M2** etc. Le candidat y répond en **noircissant** la case correspondant à sa réponse dans la feuille-réponse □. Pour chacune de ces questions, il y a une et une seule bonne réponse. Toute réponse fausse retire des points aux candidats. Noircir plusieurs réponses à une même question a un effet de neutralisation (le candidat récoltera 0 point).
- Les *questions à réponse brute* sont numérotées **L1**, **L2** etc. Elles ne demandent aucune justification : les résultats sont reportés par le candidat dans le cadre correspondant sur la feuille-réponse \triangle . Tout débordement de cadre est interdit.
- Les *questions à réponse rédigée* sont numérotées **R1**, **R2** etc. Elles sont écrites dans le cadre correspondant sur la feuille-réponse ou la feuille-réponse △, selon le symbole précédant le numéro de la question. Tout débordement de cadre est interdit.

CONSEILS DE BON SENS

- · L'énoncé est (très) long : il n'est absolument pas nécessaire d'avoir tout traité pour avoir une note et un classement excellents.
- Ne vous précipitez pas pour reporter vos réponses, notamment aux questions à choix multiples. Il est préférable d'avoir terminé un exercice avant d'en reporter les réponses.
- Ne répondez jamais au hasard à une question à choix multiples!
- · Selon l'exercice, les questions peuvent être dépendantes les unes des autres ou non. Soyez attentifs à la variété des situations.

TeSciA est une initiative de l'AORES (Association pour une Orientation Raisonnée vers l'Enseignement supérieur Scientifique). Énoncés et feuilles-réponses réalisés à l'aide du logiciel libre Auto-Multiple-Choice.

Exercice 1. Nombres complexes

 \square **M1** Le produit (1-5i)(2+i) vaut :

$$A = -4 - 96$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}$$
 $-4 + 9i$

$$\boxed{\mathbf{C}}$$
 7 – 9 i

$$\boxed{\mathbf{E}}$$
 7 + 9 i

 \square **M2** Le nombre complexe $4 + 2\sqrt{5}i$ a pour module :

$$\boxed{\mathrm{D}}$$
 36 $\boxed{\mathrm{E}}$ $\sqrt{54}$

 \square M3 L'inverse du nombre complexe 2+3i est :

[A]
$$\frac{2}{13} - \frac{3i}{13}$$
 [B] $\frac{2}{7} - \frac{3i}{7}$ [C] $\frac{1}{2} + \frac{i}{3}$ [D] $\frac{1}{2} - \frac{i}{3}$ [E] $-2 - 3i$

$$\boxed{\mathbf{B}} \quad \frac{2}{7} - \frac{3i}{7}$$

$$\boxed{\mathbf{C}} \quad \frac{1}{2} + \frac{i}{3}$$

$$\boxed{\mathbf{D}} \quad \frac{1}{2} - \frac{i}{3}$$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}$$
 $-2-3i$

Mettre le quotient $\frac{3+2i}{2+i}$ sous la forme a+ib, avec a et b réels. \triangle L1

 \square M4 Le nombre de solutions complexes de l'équation $z^4=1$ est :

$$\boxed{\mathsf{C}}$$
 2

$$\mathbf{D} = 0$$

 \square M5 L'équation $z^2 - 2z + 6 = 0$ possède pour solutions complexes :

$$\boxed{\mathbf{A}} \ -1 + i\sqrt{5} \ \text{et} \ -1 - i\sqrt{5}$$

B
$$2 + 2i\sqrt{5}$$
 et $-2 + 2i\sqrt{5}$

$$\boxed{\mathbf{C}} \ 1 + i\sqrt{5} \text{ et } 1 - i\sqrt{5}$$

$$\boxed{\mathbf{D}} \ 2\sqrt{5} + 2i \text{ et } 2\sqrt{5} - 2i$$

E
$$2 + 2i\sqrt{5}$$
 et $2 - 2i\sqrt{5}$

 \square **M6** La valeur de $\left(\frac{1-i}{1+i}\right)^{2022}$ est

B
$$\frac{-1}{2^{1011}}$$

$$\mathbf{C}$$

Exercice 2. Arithmétique

\triangle L2 Décomposer 264 en facteurs premiers.
\square M7 Le plus grand diviseur commun de 360 et 21 est :
A 21 B 3 C 2520 D 7 E 1
\triangle L3 — Donner un nombre entier naturel n à trois chiffres tel que les restes de 756 et 537 dans la division euclidienne par n soient respectivement égaux à 49 et 32.
\square M8 Soit $n \in \mathbb{N}^*$. Si n n'est pas premier alors il possède un diviseur premier inférieur ou égal à \sqrt{n} .
A Vrai B Faux C On ne peut pas conclure
\square M9 Soit n un entier supérieur ou égal à 2. Le plus petit diviseur de n strictement supérieur à 1 est premier. A Faux B On ne peut pas conclure C Vrai
$oxed{A}$ Faux $oxed{B}$ On ne peut pas conclure $oxed{C}$ Vrai
\square M10 Le dernier chiffre de 2017^{2222} est :
A 5 B 7 C 3 D 9 E 1
\square M11 La décomposition de 999 en facteurs premiers est :
A $999 = 3^4 \cdot 19$ B $999 = 23 \cdot 43$ C $999 = 3^2 \cdot 11^2$ D $999 = 3^3 \cdot 37$
\square M12 Pour tout entier naturel n , l'entier $10^{3n}-1$ est divisible par :
A 19 B 11 C 73 D 43 E 37
\Box M13 L'entier $10^{10} + 10^{20} + 10^{30}$ est divisible par :
A 37 B 11 C 19 D 73 E 43
○ R1 Justifiez votre réponse à la question M13.
\square M14 Soit a et b deux entiers premiers entre eux, avec $a < b$. On introduit les paires de nombres :
(1) $a+b$ et $a-b$; (2) a et a^2+b^2 ; (3) $7a+8b$ et $6a+7b$; (4) $2a+3b$ et $a+3b$.
Parmi ces paires, exactement deux sont constituées d'entiers premiers entre eux quel que soit le couple (a,b) . Il s'agit de :
A (1) et (3) B (1) et (2) C (3) et (4) D (2) et (4) E (2) et (3)
\square M15 Soit n un entier strictement positif. On note $n!$ le produit de tous les entiers de 1 à n , autrement dit $n! = 1 \times 2 \times \cdots \times n$. Que dire alors de l'affirmation « les nombres n et $n! + 1$ n'ont alors pas de diviseur premier
commun »?

B Vrai

A On ne peut pas conclure

C Faux

\bigcirc	R2	Existe-t-il un p	olus g	grand nombre	oremier?	Justifiez votre r	éponse en	vous ar	pu	yant sur l	a question	précédente

Exercice 3. Mots

Dans cet exercice, on appelle *mot* toute suite finie de 0 et de 1 contenant au moins un chiffre. Par exemple, 11010, 001011 et 00 sont des mots. La longueur d'un mot est alors le nombre de chiffres le constituant : les mots précédents sont de longueurs respectives 5, 6 et 2.

Si u et v sont deux mots, on note u-v le mot obtenu en juxtaposant à la suite de u les chiffres du mot v. Par exemple, si u=1101 et v=10001, alors u-v=110110001.

Si u est un mot, on note \widehat{u} le mot obtenu en inversant l'ordre des chiffres de u. Par exemple, si u=1100101, alors $\widehat{u}=1010011$. On dit qu'un mot u est un **palindrome** lorsque $u=\widehat{u}$. Par exemple, le mot 1101011 est un palindrome.

Exemples

Dans les questions M16 à M18, on prend u = 0101 et v = 101101.

□ M1 6	Vrai ou faux? Le mot u est un palindrome.					
	A		Vrai	В	Faux	
□ M17	M17 Vrai ou faux? Le mot v est un palindrome.					
	A		Faux	В	Vrai	
△ L4	Écrire le mot $u-v$.					
□ M18	Vrai ou faux? Le mot $u-v$ est un pa	lin	drome.			

 \square M19 Soit u et v deux mots. Le mot $\widehat{u-v}$ est systématiquement égal à :

A Vrai

B Faux

- \square M20 Soit u un palindrome. La propriété « le mot u-u est un palindrome » est :
- A toujours vraie
- B toujours fausse
- $oxed{\mathbb{C}}$ vraie pour certains palindromes u mais pas tous

\square M21 Soit u et v deux palindromes. La propriété « le mot $u-v$ est un palindrome » est :
A toujours fausse
$oxed{B}$ vraie pour certains palindromes u et v mais pas tous
C toujours vraie
\square M22 La propriété « le mot $u-v-u$ est un palindrome » est :
$oxed{\mathbf{A}}$ vraie lorsque u et v sont des palindromes, mais aussi pour certains mots u et v qui ne sont pas des palindromes
$\boxed{\mathbf{B}}$ fausse lorsque u et v sont des palindromes, mais vraie pour certains autres mots u et v qui ne sont pas des
palindromes
$oxed{\mathbb{C}}$ vraie lorsque u et v sont des palindromes, et uniquement dans ce cas
$\boxed{\mathbf{D}}$ vraie pour certains palindromes u et v mais pas tous
$oxed{\mathbb{E}}$ vraie pour n'importe quels mots u et v
Anti-mots
Étant donné un mot u , on note \overline{u} le mot obtenu en remplaçant tous les "1" de u par des "0", et tous les "0" de u
par des "1". Par exemple, si $u=1100101$, alors $\overline{u}=0011010$.
On dit qu'un mot u est un anti-mot lorsque $\widehat{u} = \overline{u}$. Par exemple,
• le mot $u=001011$ est un anti-mot car $\widehat{u}=110100$ et $\overline{u}=110100$, et ainsi $\widehat{u}=\overline{u}.$
• le mot $u=001101$ n'est pas un anti-mot car $\widehat{u}=101100$ et $\overline{u}=110010$, et ainsi $\widehat{u}\neq \overline{u}$.
☐ M23 Lequel des mots suivants est un anti-mot?
A 1001 P 101010 C 1011100 D 1 F 011
[A] 1001 [B] 101010 [C] 1011100 [D] 1 [E] 011
☐ M24 Laquelle des affirmations suivantes est correcte?
$oxed{\mathbf{A}}$ Tous les mots u vérifient $\overline{u}=u$
$\overline{{f B}}$ Certains mots u vérifient $\overline{u}=u,$ mais pas tous
$\overline{\mathbb{C}}$ Aucun mot u ne vérifie $\overline{u} = u$
☐ M25 Laquelle des affirmations suivantes est correcte?
A Aucun palindrome n'est un anti-mot
B Certains palindromes sont des anti-mots, mais pas tous
C Tous les palindromes sont des anti-mots
\square M26 La propriété « \overline{u} est un palindrome » est :
$oxed{\mathbf{A}}$ vraie lorsque u est un palindrome, et uniquement dans ce cas
$oxed{B}$ vraie lorsque u est un palindrome, mais aussi pour certains mots u qui ne sont pas des palindromes
\square fausse lorsque u est un palindrome, mais vraie pour certains mots u qui ne sont pas des palindromes
$\overline{\mathbf{D}}$ vraie pour certains palindromes u mais pas tous
$\stackrel{\square}{E}$ vraie pour n'importe quel mot u

☐ **M27** Laquelle des affirmations suivantes est correcte?

- [A] Si u est un anti-mot, alors les mots \overline{u} et \widehat{u} peuvent être des anti-mots, mais il y a des exemples d'anti-mots u pour lesquels ce n'est pas le cas
- B Si u est un anti-mot, alors les mots \overline{u} et \hat{u} sont nécessairement des anti-mots
- $\boxed{\mathbf{C}}$ Si u est un anti-mot, alors les mots \overline{u} et \widehat{u} ne sont pas des anti-mots

Soit u un mot de longueur paire. Démontrer que u est un anti-mot si et seulement s'il existe un mot v tel que $u = v - \widehat{\overline{v}}$.

Nombre de 1

Étant donné un mot u de longueur n ainsi qu'un entier k compris entre 1 et n, on note $s_k(u)$ le nombre d'occurrences du chiffre 1 parmi les k premiers chiffres de u. Par convention, si k=0, on pose $s_0(u)=0$. Par exemple, pour le mot u = 11010:

- On a $s_0(u) = 0$ par convention;
- Le premier chiffre de u est 1, donc $s_1(u) = 1$;
- Les deux premiers chiffres de u sont 1, 1, donc $s_2(u) = 2$;
- Les trois premiers chiffres de u sont 1, 1, 0, donc $s_3(u) = 2$;
- Les quatre premiers chiffres de u sont 1, 1, 0, 1, donc $s_4(u) = 3$;
- Les cinq premiers chiffres de u sont 1, 1, 0, 1, 0, donc $s_5(u) = 3$.
- \square **M28** Le nombre $s_4(00101111)$ vaut :
- B 5
- C 2
- D 1
- |E| 4
- \square M29 Soit u un mot de longueur n. Si k est un entier compris entre 1 et n, alors le k-ième chiffre du mot u vaut :
 - $s_{k+1}(u)$
- $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ $s_{k+1}(u) s_k(u)$ $\begin{bmatrix} \mathbf{C} \end{bmatrix}$ $s_k(u) s_{k-1}(u)$ $\begin{bmatrix} \mathbf{D} \end{bmatrix}$ $s_k(u)$
- \square M30 Soit u et v deux mots de même longueur n. L'affirmation « si $s_k(u) = s_k(v)$ pour tout entier k compris entre 1 et n, alors u = v » est :
 - A systématiquement fausse
 - $oxed{B}$ vraie pour certains choix de u, v et n, fausse pour d'autres
 - C systématiquement vraie
- \square M31 Soit u un mot de longueur n, et k un entier compris entre 1 et n. Alors $s_k(\overline{u})$ est égal à :
- $A = n s_k(u)$

 \square M32 Soit u un mot de longueur n, et k un entier compris entre 1 et n. Alors $s_k(\widehat{u})$ est égal à :

$$\boxed{\mathbf{A}} \ s_n(u) - s_{n-k}(u)$$

$$\boxed{\mathbf{B}} \ n - s_{n-k}(u)$$

$$\boxed{\mathbf{C}} k - s_{n-k}(u)$$

$$\boxed{\mathbf{D}} \ s_n(u) - s_k(u)$$

$$E k - s_k(u)$$

Exercice 4. Congruences

Dans cet exercice, on considère des suites u à valeurs entières vérifiant une relation de récurrence (\mathcal{R}) exprimant u_{n+1} en fonction de u_n et n.

Soit q un entier naturel non nul. On dit que (\mathcal{R}) possède une congruence stable modulo q lorsqu'il existe un entier m tel que toute suite u à valeurs entières et vérifiant $u_0 \equiv m$ [q] et la relation de récurrence (\mathcal{R}) vérifie aussi $u_n \equiv m$ [q] pour tout n dans \mathbb{N} .

Par exemple, la relation de récurrence $u_{n+1} = u_n + 2$ possède une congruence stable modulo 2 car toute suite u vérifiant cette relation ainsi que $u_0 \equiv 0$ [2] vérifie aussi $u_n \equiv 0$ [2] pour tout n dans \mathbb{N} .

Dans les questions M33 à M36, on considère la relation de récurrence

$$(\mathcal{R}_1): u_{n+1} = (u_n)^2 + 1.$$

 \square M33 Vrai ou faux? La relation (\mathcal{R}_1) possède une congruence stable modulo 2.

A Faux B Vrai

 \square M34 Vrai ou faux? La relation (\mathcal{R}_1) possède une congruence stable modulo 3.

A Faux B Vrai

 \square M35 Vrai ou faux? La relation (\mathcal{R}_1) possède une congruence stable modulo 4.

A Faux B Vrai

 \square M36 On se donne un entier quelconque a, et on considère la suite u vérifiant $u_0 = a$ et la relation de récurrence (\mathcal{R}_1) . Vrai ou faux? Deux termes consécutifs de u n'ont jamais la même parité, et ce quel que soit a.

A Faux B Vrai

On considère à présent la relation de récurrence

$$(\mathcal{R}_2): u_{n+1} = (n^2 + 1) u_n.$$

\square M37 L'ensemble des $q\in\mathbb{N}^*$ tels que (\mathcal{R}_2) possède une congruence stable modulo q est :
A réduit à un élément
B vide
$\overline{\mathbb{C}}$ égal à \mathbb{N}^*
D fini et possède plusieurs éléments
E infini mais pas égal à N*
imini mais pas egai a 19
\square M38 Soit u une suite à termes entiers vérifiant la relation de récurrence (\mathcal{R}_2) . L'affirmation « pour tout entier naturel n , l'entier u_n a la même parité que u_0 » est alors :
A vraie B fausse
On considère à présent, et jusqu'à la fin de l'exercice, la relation de récurrence
$(\mathcal{R}_3): u_{n+1} = au_n + b \;,$
où a est un entier (relatif) différent de 1 et b est un entier (relatif).
Pour les questions M39 à M41, on étudie le cas particulier où $a=5$ et $b=-1$: la relation de récurrence est donc
$u_{n+1} = 5u_n - 1.$
\square M39 La relation (\mathcal{R}_3) possède une congruence stable modulo 3.
A Faux B Vrai
\square M40 La relation (\mathcal{R}_3) possède une congruence stable modulo 6.
A Faux B Vrai
\square M41 La relation (\mathcal{R}_3) possède une congruence stable modulo 7.
A Faux B Vrai
Dans toute la suite, on ne suppose plus que $a=5$ ni que $b=-1$. Ainsi, a et b sont deux entiers relatifs quelconques
vérifiant $a \neq 1$.
\square M42 La relation (\mathcal{R}_3) possède une congruence stable modulo q si et seulement si : $\boxed{\mathbf{A}}$ $(a-1)$ divise b
$oxed{\mathbf{B}}$ il existe $m \in \mathbb{Z}$ tel que $m = am + b$
$oxed{\mathbb{C}}$ il existe $m \in \mathbb{Z}$ tel que $m \equiv am + b \; [q]$
\square M43 Vrai ou faux? Si $a-1$ et q sont premiers entre eux, alors (\mathcal{R}_3) possède une congruence stable modulo q .
A Vrai B Faux

□ M44	Vrai ou faux? Si $q=a$, alors (\mathcal{R}_3) possède une congruence stable modulo q .
	A Faux B Vrai
□ M45	Vrai ou faux? Si $q=a+1$ et a est pair, alors (\mathcal{R}_3) possède une congruence stable modulo q .
	A Faux B Vrai
□ M46	Vrai ou faux? Si $q=a+1$, a est impair et b est impair, alors (\mathcal{R}_3) possède une congruence stable modulo q .
	A Faux B Vrai
□ M47	Vrai ou faux? Si $q = a + 1$, a est impair et b est pair, alors (\mathcal{R}_3) possède une congruence stable modulo q .
	A Vrai B Faux
□ M48	L'ensemble des entiers $q>0$ tels que (\mathcal{R}_3) possède une congruence stable modulo q est toujours :
	A vide B réduit à un élément C fini avec plusieurs éléments D infini
	Vrai ou faux? Il est possible d'ajuster a et b pour que la relation de récurrence (\mathcal{R}_3) possède une congruence odulo tout entier $q > 0$.
	A Vrai B Faux

Exercice 5. Nombres complexes et géométrie

 \square M50 Soit $a \in]0,\pi[$. Le nombre complexe $z=-\cos a+i\sin a$ est alors égal à :

$$oxed{A}$$
 $e^{i(a+\pi)}$

$$\mathbf{B}$$
 e^{ia}

$$C$$
 e^{-ie}

$$egin{bmatrix} f B & e^{ia} & f C & e^{-ia} & f D & e^{i(-a+\pi)} & f E & -e^{ia} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}$$
 $-e^{ia}$

 \square **M51** Le module et un argument de $\frac{\sqrt{6}-i\sqrt{2}}{2}$ sont respectivement :

$$\boxed{\mathbf{A}} \sqrt{2} \text{ et } \frac{\pi}{6}$$

$$\boxed{\mathbf{B}}$$
 $\sqrt{3}$ et $\frac{5\pi}{6}$

$$\boxed{\mathbb{C}}$$
 $\sqrt{2}$ et $\frac{2\pi}{3}$

$$\boxed{\mathbf{D}} \sqrt{2} \text{ et } -\frac{5\pi}{6}$$

$$\boxed{\mathbf{E}} \sqrt{2} \text{ et } -\frac{\pi}{6}$$

 \square M52 Soit z un nombre complexe. Le nombre $\left|1+iz\right|^{2}+\left|z+i\right|^{2}$ est alors égal à :

$$A - 2|z|^2$$

$$\boxed{\mathbf{B}} \quad 4|z|+4$$

$$\boxed{\mathbf{D}} \quad 2|z| + 2$$

$$\boxed{\mathbf{E}} \quad 4\left|z\right|^2 + 4$$

- \square M53 Soit z et z' deux nombres complexes. Parmi les affirmations suivantes, laquelle est vraie?
 - $\boxed{\mathbf{A}} |z| \leqslant |\mathrm{Re}(z)| + |\mathrm{Im}(z)| \leqslant \sqrt{2}|z|$
 - B $|z| + |z'| \le \frac{1}{2}(|z + z'| + |z z'|)$
 - C $|z| + |z'| \leq \frac{1}{4}(|z + z'| + |z z'|)$
- \triangle L5 Combien y a-t-il de nombres complexes z vérifiant $|z|=\left|\frac{1}{z}\right|=|z-1|$?
- \square M54 On pose $z=-1+i\sqrt{3}$. Laquelle des affirmations suivantes est vraie?
 - $oxed{A}$ La suite de terme général $\mathrm{Re}(z^n)$ est convergente
 - B $\operatorname{Re}(z^n)$ tend vers $-\infty$ quand n tend vers $+\infty$
 - \fbox{C} Re (z^n) tend vers $+\infty$ quand n tend vers $+\infty$
 - $\boxed{\mathbf{D}}$ Pour tout réel M, il existe un entier naturel n tel que $z^n \in \mathbb{R}$ et $z^n > M$
- \square M55 On rappelle que les racines quatrièmes de l'unité sont les nombres complexes z tels que $z^4=1$. Soit n un entier naturel non nul. La somme des puissances n-ièmes des racines quatrièmes de l'unité vaut :
 - $oxed{A}$ 0 quelle que soit la valeur de n
 - lacksquare 4 quelle que soit la valeur de n
 - $\boxed{\mathsf{C}}$ 4 si 8 divise n
 - $\boxed{\mathbf{D}}$ 4 si et seulement si 8 divise n
 - $oxed{E}$ 4 lorsque 8 divise n, et 0 dans le cas contraire

Exercice 6. Transformations complexes

Le plan euclidien \mathcal{P} est rapporté à un repère orthonormal, ce qui permet de repérer chaque point par une affixe. On note f l'application définie sur $\mathbb{C} \setminus \{2i\}$ par

$$f(z) = \frac{2iz - 5}{z - 2i}$$

On note A le point d'affixe 2i, et F l'application définie sur $\mathcal{P} \setminus \{A\}$, et qui au point M d'affixe z associe le point F(M) d'affixe f(z).

Un point M de $\mathcal{P} \setminus \{A\}$ est dit **invariant par** F lorsque F(M) = M.

- \square M56 Parmi les affirmations suivantes, laquelle est vraie?
- A F admet exactement quatre points invariants
- $fence{B}$ F admet exactement un point invariant
- C F admet une infinité de points invariants
- D F a exactement deux points invariants
- $oxed{E}$ F n'admet aucun point invariant

 \triangle **L6** Expliciter les points invariants par F.

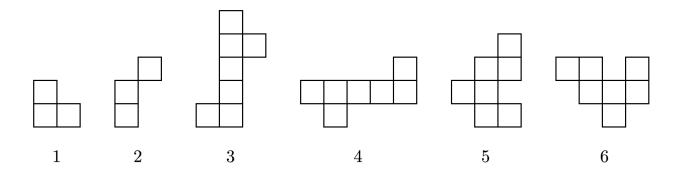
On note $\mathcal D$ la droite de $\mathcal P$ passant par les points d'affixes respectives 0 et i.

- \square M57 Pour une droite Δ passant par A, on considère la propriété $P(\Delta)$ affirmant que $\Delta \setminus \{A\}$ est envoyé par F dans une droite passant par A. Parmi les affirmations suivantes, laquelle est vraie?
 - [A] La seule droite Δ passant par A et pour laquelle $P(\Delta)$ est vraie est \mathcal{D}
 - [B] Il existe plusieurs droites Δ passant par A et pour lesquelles $P(\Delta)$ est vraie, mais elles sont en nombre fini
 - $\fbox{ }$ La propriété $P(\Delta)$ est vraie pour toute droite Δ passant par A
 - \square Il n'existe aucune droite Δ passant par A et pour laquelle $P(\Delta)$ est vraie
- \square **M58** Pour un cercle $\mathcal C$ de centre A, on considère la propriété $Q(\mathcal C)$ affirmant que $\mathcal C$ est envoyé par F dans un cercle de centre A. Parmi les affirmations suivantes, laquelle est vraie?
- A Il existe un et un seul cercle $\mathcal C$ de centre A et pour lequel $Q(\mathcal C)$ est vraie
- $oxed{B}$ Il n'existe aucun cercle $\mathcal C$ de centre A et pour lequel $Q(\mathcal C)$ est vraie
- \square La propriété $Q(\mathcal{C})$ est vraie pour tout cercle \mathcal{C} de centre A
- \square Il existe plusieurs cercles $\mathcal C$ de centre A et pour lesquels $Q(\mathcal C)$ est vraie, mais ils sont en nombre fini
- \square M59 Pour un cercle \mathcal{C} passant par A, on considère la propriété $R(\mathcal{C})$ affirmant que $\mathcal{C} \setminus \{A\}$ est envoyé par F dans un cercle passant par A. Parmi les affirmations suivantes, laquelle est vraie?
 - $oxed{A}$ Il existe un et un seul cercle $\mathcal C$ passant par A et pour lequel $R(\mathcal C)$ est vraie
 - $\fbox{ B }$ Il n'existe aucun cercle ${\mathcal C}$ passant par A et pour lequel $R({\mathcal C})$ est vraie
- $\boxed{\mathbf{C}}$ Il existe plusieurs cercles $\mathcal C$ passant par A et pour lesquels $R(\mathcal C)$ est vraie, mais ils sont en nombre fini
- $\boxed{\mathbf{D}}$ La propriété $R(\mathcal{C})$ est vraie pour tout cercle \mathcal{C} passant par A
- \triangle **R4** Justifiez votre réponse à la question **M59**.

Exercice 7. Polyominos

Un **polyomino** est un assemblage de carrés de côté 1, appelés « cellules », collés les uns aux autres le long d'un côté. Deux tels assemblages définissent le même polyomino lorsqu'ils peuvent être transformés l'un en l'autre à l'aide de symétries, de rotations ou de translations. Il existe un seul polyomino à une cellule, représenté par un carré de côté 1. De même, il existe un seul polyomino à deux cellules, représenté par deux cellules accolées.

Dans le dessin suivant :



- Toutes les assemblages présentés représentent un polyomino, à l'exception de la figure 2.
- Les assemblages 3 et 4 représentent le même polyomino car on peut obtenir l'un à partir de l'autre à l'aide d'une symétrie d'axe vertical et d'une rotation.
- \triangle L7 Combien existe-t-il de polyominos à trois cellules?
- \triangle **L8** Combien existe-t-il de polyominos à quatre cellules?
- \square M60 Le nombre de polyominos à cinq cellules est :

Un **polyomino unilatéral** est un assemblage de cellules : deux assemblages représentent le même polyomino unilatéral lorsqu'il est possible de transformer l'un en l'autre uniquement à l'aide de rotations ou de translations.

Dans le dessin ci-dessus, les assemblages 5 et 6 représentent le même polyomino et aussi le même polyomino unilatéral, car on peut obtenir l'un à partir de l'autre à l'aide d'une rotation. En revanche, les assemblages 3 et 4 représentent deux polyominos unilatéraux distincts.

 \square M61 Le nombre de polyominos unilatéraux à trois cellules est :

$$\boxed{\mathbf{D}}$$
 3

$$|C|$$
 6

A 17

B 12

C 10

D 18

E 15

A 23

B 25

C 18

D 35

E 31