TesciA

Épreuve de Mathématiques Expertes 2023

Exercice 2. Semi-inverses d'une fonction

Note préliminaire : cet exercice est également l'exercice 2 de l'épreuve de Mathématiques Générales Avancées 2023; seule la numérotation des questions diffère d'une épreuve à l'autre.

Dans tout cet exercice, on se donne deux fonctions f et g, définies en tout réel et à valeurs réelles. On introduit quatre conditions :

- (f,g) vérifie \mathcal{C}_1 lorsque g(f(x)) = x pour tout réel x.
- (f,g) vérifie \mathcal{C}_2 lorsque f(g(y)) = y pour tout réel y.
- (f,g) vérifie \mathcal{C}_3 lorsque f(g(f(x))) = f(x) pour tout réel x.
- (f,g) vérifie \mathcal{C}_4 lorsque g(f(g(y))) = g(y) pour tout réel y.

Par exemple:

- lorsque $f(x) = \frac{x}{2}$ pour tout réel x, et g(y) = 2y pour tout réel y, les conditions C_1 et C_2 sont évidemment vérifiées;
- lorsque $f(x) = \frac{x}{2}$ pour tout réel x, et g(y) = y + 1 pour tout réel y, la condition C_1 n'est pas vérifiée, car l'égalité $\frac{x}{2} + 1 = x$ ne vaut pas pour x = 0 (par exemple). Pour un réel y, on pose $\operatorname{sgn}(y) = 1$ si $y \ge 0$, et $\operatorname{sgn}(y) = -1$ si y < 0.

On dit qu'une fonction est **constante** lorsqu'elle ne prend qu'une seule valeur.

On introduit enfin les cinq fonctions particulières f_1, f_2, g_1, g_2 et g_3 qui suivent :

- f_1 associe à tout réel x le réel $f_1(x) = e^x$;
- f_2 associe à tout réel x le réel $f_2(x) = x^2$;
- g_1 associe à tout réel y le réel $g_1(y) = \ln(y)$ si y > 0, et $g_1(y) = 0$ sinon;
- g_2 associe à tout réel y le réel $g_2(y) = \sqrt{|y|}$;
- g_3 associe à tout réel y le réel $g_3(y) = \operatorname{sgn}(y) \cdot \sqrt{|y|}$. Par exemple $g_3(-4) = -2$ et $g_3(9) = 3$.

M11 Vrai ou faux? La condition C_1 est vérifiée par le couple (f_1, g_1) .

Méthode et solution : Pour tout réel x, on a $f_1(x) = e^x > 0$ donc $g_1(f_1(x)) = \ln(e^x) = x$. Ainsi l'affirmation indiquée est vraie.

M12 Vrai ou faux? La condition C_2 est vérifiée par le couple (f_1, g_1) .

Méthode et solution : Il faut faire attention à la définition précise de g_1 (avec conditions sur le signe). Ainsi pour tout réel $y \leq 0$ on a $g_1(y) = 0$ donc $f_1(g_1(y)) = e^0 = 1$ donc

AORES - Association pour une Orientation Raisonnée vers l'Enseignement supérieur Scientifique — 19 février 2024

 $f_1(g_1(y)) \neq y$. C'est en particulier vrai pour au moins une valeur de y (par exemple y = 0). Ainsi l'affirmation indiquée est fausse.

M13 Vrai ou faux? La condition C_1 est vérifiée par le couple (f_2, g_2) .

Méthode et solution : Pour tout réel x on a $g_2(f_2(x)) = \sqrt{|x^2|} = \sqrt{x^2} = |x|$. En particulier $g_2(f_2(-1)) \neq -1$. Ainsi l'affirmation indiquée est fausse.

M14 Vrai ou faux? La condition C_2 est vérifiée par le couple (f_2, g_2) .

Méthode et solution : Pour tout réel y on a $f_2(g_2(y)) = (\sqrt{|y|})^2 = |y|$. À nouveau $f_2(g_2(-1)) \neq -1$. Ainsi l'affirmation indiquée est fausse.

M15 Vrai ou faux? La condition C_3 est vérifiée par le couple (f_2, g_2) .

Méthode et solution : Soit x un nombre réel. En reprenant le calcul effectué à la question précédente, on voit que $f_2(g_2(f_2(x))) = |f_2(x)|$ et $|f_2(x)| = f_2(x)$ car $f_2(x) = x^2 \ge 0$. Ainsi $f_2(g_2(f_2(x))) = f_2(x)$. L'affirmation indiquée est donc vraie.

M16 Vrai ou faux? La condition C_4 est vérifiée par le couple (f_2, g_2) .

Méthode et solution : Soit y un nombre réel. En utilisant le calcul effectué pour la question M14, on voit que $g_2(f_2(g_2(y))) = g_2(|y|)$ et $g_2(|y|) = g_2(y)$ car ||y|| = |y|. Ainsi $g_2(f_2(g_2(y))) = g_2(y)$. L'affirmation indiquée est donc vraie.

M17 Vrai ou faux? La condition C_1 est vérifiée par le couple (f_2, g_3) .

Méthode et solution : Soit x un nombre réel. On a $f_2(x) = x^2 \geqslant 0$ donc $g_3(f_2(x)) = \sqrt{f_2(x)} = \sqrt{x^2} = |x|$. En particulier $g_3(f_2(-1)) = 1$ puis $g_3(f_2(-1)) \neq -1$. Ainsi l'affirmation indiquée est fausse.

M18 Vrai ou faux? La condition C_2 est vérifiée par le couple (f_2, g_3) .

Méthode et solution : Soit y un nombre réel. Alors $f_2(g_3(y)) = g_3(y)^2 = (\sqrt{|y|})^2 = |y|$. De nouveau, $f_2(g_3(-1)) \neq -1$. Ainsi l'affirmation indiquée est fausse.

M19 Vrai ou faux? La condition C_3 est vérifiée par le couple (f_2, g_3) .

Méthode et solution : Soit x un nombre réel. Par le calcul effectué pour la question précédente, puisque $f_2(x) \ge 0$ on trouve $f_2(g_3(f_2(x))) = |f_2(x)| = f_2(x)$. Ainsi l'affirmation indiquée est vraie.

M20 Vrai ou faux? La condition C_4 est vérifiée par le couple (f_2, g_3) .

Méthode et solution : Soit y un nombre réel. Par le calcul effectué pour la question M18, on a $g_3(f_2(g_3(y))) = g_3(|y|)$. Or $g_3(-1) = -1$ et $g_3(|-1|) = g_3(1) = 1$. Il existe donc un réel y tel que $g_3(f_2(g_3(y))) \neq g_3(y)$. Ainsi l'affirmation indiquée est fausse.

M21 Vrai ou faux? Quel que soit le choix des fonctions f et g, si la condition C_1 est vérifiée alors la condition C_2 l'est aussi.

Méthode et solution : Il faut penser aux exemples déjà étudiés! Dans le cas où $f = f_1$ et $g = g_1$, on a vu que C_1 est vraie mais C_2 est fausse. Ainsi l'affirmation indiquée est fausse.

M22 Vrai ou faux? Quel que soit le choix des fonctions f et g, si les conditions C_3 et C_4 sont vérifiées alors la condition C_1 est vérifiée.

Méthode et solution : À nouveau, un examen des exemples déjà étudiés permet d'observer que pour $f = f_2$ et $g = g_2$, les conditions \mathcal{C}_3 et \mathcal{C}_4 sont vérifiées, mais pas la condition \mathcal{C}_1 . Ainsi l'affirmation indiquée est fausse.

M23 Vrai ou faux? Quel que soit le choix des fonctions f et g, si la condition C_1 est vérifiée alors les conditions C_3 et C_4 sont vérifiées.

Méthode et solution : Aucun des exemples précédents ne vient contredire cette affirmation. Il est donc raisonnable de chercher à établir qu'elle est vraie. Prenons donc des fonctions arbitraires f et g de \mathbb{R} dans \mathbb{R} telles que le couple (f,g) vérifie la condition \mathcal{C}_1 . Pour tout réel x on a donc g(f(x)) = x si bien que f(g(f(x))) = f(x) en appliquant f. Ainsi \mathcal{C}_3 est vérifiée. Ensuite, pour tout réel g0, on a g(f(g(g))) = g(g)0 en appliquant la condition g1 au réel g2. Ainsi g3 est vérifiée. En conclusion, l'affirmation indiquée est vraie.

M24 Vrai ou faux? Si C_1 est vérifiée alors f prend toutes les valeurs réelles possibles.

Méthode et solution : Il n'est pas clair au vu de C_1 que l'affirmation soit vraie. On se penche donc sur les exemples déjà traités. Dans le cas où $f = f_1$ et $g = g_1$ on observe que C_1 est vérifiée (voir la question M11) tandis que f ne prend que des valeurs strictement positives. Ainsi, l'affirmation indiquée est fausse.

M25 Vrai ou faux? Si C_1 est vérifiée et f prend toutes les valeurs réelles possibles, alors C_2 est vérifiée.

Méthode et solution: Dans aucun des exemples étudiés on ne trouve à la fois que C_1 est vérifiée et que f prend toutes les valeurs réelles possibles, sinon dans l'exemple $f(x) = \frac{x}{2}$ cité dans l'énoncé. Il est donc raisonnable d'essayer de démontrer l'affirmation indiquée. Supposons donc que C_1 soit vérifiée et que f prenne toute les valeurs réelles possibles. Soit g un réel. On veut montrer que f(g(g)) = g. Or on sait que C_3 est vérifiée (voir la question $\mathbf{M23}$), donc f(g(f(z))) = f(z) pour tout réel g. Comme on sait qu'il existe un réel g0 tel que g1 tel que g2 tel que g3 est donc réalisée. Ainsi, l'affirmation indiquée est g4 vraie.

M26 Vrai ou faux? Si C_3 est vérifiée et f prend toutes les valeurs réelles possibles, alors C_1 est vérifiée.

Méthode et solution : On peut à nouveau regarder les exemples étudiés. En inversant les rôles des fonctions, on observe d'après M12 que (g_1, f_1) ne vérifie pas C_1 . En revanche

 (f_1, g_1) vérifie \mathcal{C}_1 par **M11**, donc il vérifie \mathcal{C}_4 par **M23**, autrement dit (g_1, f_1) vérifie \mathcal{C}_3 . Enfin, g_1 prend toutes les valeurs réelles possibles puisqu'elle prend toutes les valeurs prises par la fonction logarithme népérien. Ainsi l'affirmation indiquée est fausse.

M27 Vrai ou faux? Si C_3 est vérifiée et f prend toutes les valeurs réelles possibles, alors C_1 est vérifiée.

Méthode et solution : C'est exactement le principe général qu'on a établi dans notre réponse à M25. L'affirmation indiquée est donc vraie.

M28 Pour la fonction f qui à x associe x + 1, on s'intéresse aux fonctions g telles que (f,g) vérifie \mathcal{C}_1 .

 $M\acute{e}thode$ et solution : On écrit la condition \mathcal{C}_1 pour une fonction arbitraire g de \mathbb{R} dans \mathbb{R} : elle signifie ici que g(x+1)=x pour tout réel x. Par changement de variable, il est immédiat qu'elle est vérifiée si et seulement si g(y)=y-1 pour tout réel y. Ainsi, la fonction g qui à tout réel y associe y-1 est la seule fonction telle que (f,g) vérifie \mathcal{C}_1 . La bonne réponse est donc : il existe exactement une fonction g telle que \mathcal{C}_1 soit vérifiée.

M29 Pour la fonction f qui à x associe |x|, on s'intéresse aux fonctions g telles que (f,g) vérifie \mathcal{C}_1 .

Méthode et solution : Soit g une fonction de \mathbb{R} dans \mathbb{R} . Le couple (f,g) vérifie \mathcal{C}_1 si et seulement si g(|x|) = x pour tout réel x. C'est impossible car cette condition impliquerait simultanément g(1) = 1 et g(1) = g(|-1|) = -1! La bonne réponse est donc : il n'existe aucune fonction g telle que \mathcal{C}_1 soit vérifiée.

Commentaire : l'existence d'une fonction g tel que (f,g) vérifie \mathcal{C}_1 implique (et est même équivalente!) au fait que f soit *injective*, ce qui signifie que f envoie systématiquement deux réels distincts sur deux réels distincts (autrement dit, deux réels distincts ne peuvent avoir la même image par f).

L2 On suppose que la fonction g est constante. Expliciter sans démonstration les fonctions f telles que \mathcal{C}_3 soit vérifiée.

Méthode et solution: Notons a la valeur prise par g. Pour une fonction arbitraire f de \mathbb{R} dans \mathbb{R} , la condition \mathcal{C}_3 se récrit donc f(a) = f(x) pour tout réel x, car g(f(x)) = a. Ainsi, cette condition est vérifiée seulement si f est constante, et réciproquement si f est constante alors il est immédiat que f(a) = f(x) pour tout réel x. Ainsi, les fonctions f telles que \mathcal{C}_3 soit vérifiée sont les fonctions constantes de \mathbb{R} dans \mathbb{R} .

R2 Démontrer que f est constante si et seulement si la propriété C_3 est vérifiée quelle que soit la fonction q.

Solution : Supposons d'abord que f est constante de valeur notée y. Alors il est immédiat que pour toute fonction g de \mathbb{R} dans \mathbb{R} , on a f(g(f(x))) = y = f(x) pour tout réel x, donc \mathcal{C}_3 est vérifiée.

Réciproquement, supposons C_3 vérifiée pour toute fonction g de \mathbb{R} dans \mathbb{R} . C'est en particulier vrai pour la fonction constante g de valeur 0, donc le raisonnement fourni pour justifier $\mathbf{L2}$ montre que f est constante.

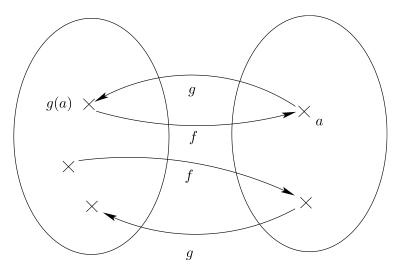
Suite itérée croisée

On fixe un réel a et l'on définit une suite $(u_n)_{n\geq 0}$ à termes réels en posant $u_0=a$ et, pour tout entier naturel n:

$$u_{n+1} = \begin{cases} g(u_n) & \text{si } n \text{ est pair} \\ f(u_n) & \text{si } n \text{ est impair.} \end{cases}$$

M30 On suppose validée la condition C_2 . On demande l'information la plus précise que l'on puisse donner sur le nombre de valeurs prises par la suite u.

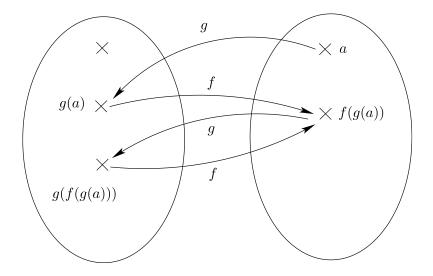
Méthode et solution : Pour cette question et les deux suivantes, il est très utile de représenter la situation par un croquis.



Ici la condition C_2 garantit que $u_2 = f(g(a)) = a$, puis par récurrence $u_{2n} = a$ pour tout $n \ge 0$, puis $u_{2n+1} = g(u_{2n}) = g(a)$ pour tout $n \in \mathbb{N}$. On voit ainsi que u prend au plus deux valeurs distinctes (à savoir a et g(a)). Pour conclure, il suffit d'observer que a, f et g peuvent être choisis de telle sorte que u prenne exactement deux valeurs, autrement dit telles que $g(a) \ne a$. Il suffit pour cela d'observer que pour $g = f_1$ et $f = g_1$, la condition C_2 est vérifiée (voir M11), et pour a = 0 on a g(a) = 1. Dans ce cas, la suite u prend exactement les valeurs 0 et 1. Ainsi, la réponse la plus précise que l'on pouvait donner est que u prend au plus u valeurs distinctes.

M31 On suppose validée la condition C_3 . On demande l'information la plus précise que l'on puisse donner sur le nombre de valeurs prises par la suite u.

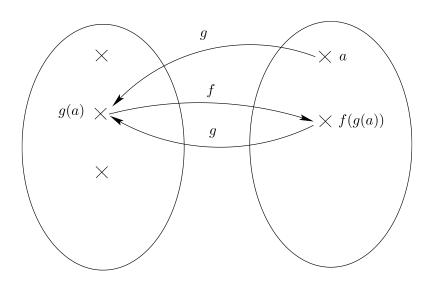
Méthode et solution : La condition C_3 appliquée au réel g(a) garantit que $u_4 = f(g(f(g(a)))) = f(g(a)) = u_2$, puis par récurrence on trouve $u_{2n} = u_2$ pour tout entier $n \ge 1$, et enfin $u_{2n+1} = g(u_2) = g(f(g(a)))$ pour tout entier $n \ge 1$.



Ainsi, l'ensemble des valeurs prises par u est $\{a, g(a), f(g(a)), g(f(g(a)))\}$, lequel possède au plus quatre éléments. Visiblement, rien dans \mathcal{C}_4 ne semble permettre d'en dire plus. Pour trouver un exemple où u prend exactement quatre valeurs, on peut penser aux exemples déjà traités. Le couple (f_2, g_3) vérifie \mathcal{C}_3 (voir M19). Dans cet exemple l'ensemble des valeurs prises par u est $\{a, \operatorname{sgn}(a) \sqrt{|a|}, |a|, \sqrt{|a|}\}$. Il suffit alors de prendre a = -4 pour trouver quatre valeurs exactement prises par cette suite, à savoir -4, -2, 4 et 2. Ainsi, la réponse la plus précise que l'on pouvait donner est que u prend au plus u valeurs distinctes.

M32 On suppose validée la condition C_4 . On demande l'information la plus précise que l'on puisse donner sur le nombre de valeurs prises par la suite u.

Méthode et solution : La condition C_4 garantit que $u_3 = g(f(g(a))) = g(a)$, puis par récurrence $u_{2n+1} = g(a)$ pour tout entier $n \ge 1$. Ensuite $u_{2n+2} = f(u_{2n+1}) = f(g(a))$ pour tout entier $n \ge 1$. Ainsi, l'ensemble des valeurs prises par u est $\{a, g(a), f(g(a))\}$, lequel a au plus trois éléments.



Vérifions qu'en choisissant convenablement a, f, g on peut faire que u prenne exactement trois valeurs, autrement dit que a, g(a), f(g(a)) soit tous différents. Observons que cela nécessite que \mathcal{C}_2 ne soit pas vérifiée. Examinons les exemples déjà étudiés. On a vu que (f_2, g_3) vérifie \mathcal{C}_3 , donc (g_3, f_2) vérifie \mathcal{C}_4 . Dans ce cas, pour tout réel a on a $f_2(a) = a^2$ et $g_3(f_2(a)) = |a|$. Il suffit donc de choisir a pour que a, |a| et a^2 soient deux à deux distincts : c'est par exemple le cas pour a = -2 (choisi pour être strictement négatif, afin que $a \neq |a|$). Ainsi la réponse la plus précise que l'on pouvait donner est que a prend au plus 3 valeurs distinctes.